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Abstract

We present the first application of field programmable gate arrays (FPGAs) as new,

customizable hardware architectures that can be harnessed for the fast and energy-

efficient calculation of quantum dynamics simulations of large chemical/material sys-

tems. Instead of tailoring the software to fixed hardware (which is the typical case for

writing quantum chemistry code for CPUs/GPUs), FPGAs allow us to directly cus-

tomize the underlying hardware – even at the level of specific electrical signals in the

circuit – to give a truly optimized computational performance for complex quantum dy-

namics calculations. By offloading the most intensive and repetitive calculations onto

an FPGA, we show that the computational performance of our hardware implemen-

tation for real-time electron dynamics calculations can even exceed that of optimized

commercial mathematical libraries running on high-performance GPUs. In addition to
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this impressive computational speedup, we show that FPGAs are immensely energy-

efficient and consume 4 times less energy than modern GPU or CPU architectures.

These energy savings are a practical and important metric for supercomputing centers

(several of which exceed over $1 million in power costs alone), as exascale computing

capabilities become more widespread and commonplace. Taken together, the imple-

mentation techniques and performance metrics of our study demonstrate that FPGAs

could play a promising role in upcoming quantum chemistry and materials science ap-

plications, particularly for the acceleration and energy-efficient execution of quantum

dynamics calculations.

1. Introduction

Modern quantum chemistry techniques depend critically on massively parallelized compu-

tational hardware to enable accurate calculations of the many-body electronic Schrödinger

equation. Indeed, over the past two decades, the quantum chemistry community has wit-

nessed tremendous technological advancements in computing that have enabled simulations

of chemical/material systems of increasing complexity. These advancements have become

even more prominent as we rapidly approach the dawn of exascale computing, with machines

capable of performing a million trillion floating-point calculations per second.1–3 However,

to enable these massive calculations, recent exascale computing guidelines4–6 have strongly

cautioned that this increase in computing power should only require a modest increase in

power consumption (to offset both operation costs and deleterious climate change effects).

Maintaining this delicate balance between computational performance vs. energy efficiency

is extremely difficult since recent reports7,8 have shown that even small supercomputing

centers regularly consume 500-1000 kW of power over the course of the year, resulting in

over $1 million for power costs alone. These estimates do not even account for cooling costs,

which have been reported to make up 25–50% of total power required by large data centers.9

To partially mitigate these issues, this work is a first attempt to address these emerging
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parallelization and power-usage concerns via our use of new computational hardware, known

as Field Programmable Gate Arrays (FPGAs), for quantum chemical calculations.

FPGAs are re-configurable hardware architectures that are comprised of an array of mil-

lions of connection blocks (CBs) and configurable logic blocks (CLBs) connected by metal

channels that can be configured to create any desired circuit (cf. Fig. 1). Like GPUs, FP-
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Figure 1: (left) Hardware schematic of a typical (island-style) FPGA architecture where
connection blocks (CBs) and configurable logic blocks (CLBs) are seamlessly integrated
with switch matrices (SMs) and physical wires. (right) Detailed hardware schematic within
the CB/CLB. Each CLB is comprised of a cluster of basic logic elements (BLEs) which
themselves are composed of re-configurable logic elements (RLEs) known as look up tables
(LUTs) and a storage element known as a flip flop (FF).

GAs are ideal for parallelization, but with the added advantage of having re-programmable

circuitry at the hardware level to enable even further parallelization and significant energy

gains. Instead of tailoring the software to fixed hardware (as is done in CPUs/GPUs), FP-

GAs follow a different philosophy and allow the customization of hardware that best meets

the specific computational application under study. This configurability is possible since

FPGAs are programmed in a hardware description language (HDL) that enables ultimate

control by routing individual electrical signals through user-defined gates directly in the

FPGA hardware. Although the use of a hardware description language may seem imprac-

tical, this programming structure allows a user to carry out several different mathematical

instructions at the same time on a single FPGA, resulting in a truly optimized computational
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performance.

While our use of re-programmable hardware bears some resemblance to the techniques

used by Shaw and co-workers to accelerate molecular dynamics calculations with the cus-

tomized Anton machine,10–12 the approach utilized in our work has several distinct dif-

ferences. In particular, Anton belongs to a class of computing architectures known as

application-specific integrated circuits (ASICs), which are extremely expensive to design and

hard to modify when new types of calculations are desired. Compared to ASICs, FPGAs can

be re-configured at the hardware level for a variety of applications, while also being signifi-

cantly less expensive to manufacture or power. As a tangible example of these advantages,

FPGAs are currently used by Microsoft to accelerate the Bing search engine, and the FPGA

market is expected to increase to 7.3 billion in 2022.13 As such, the FPGA-based approach

used in this work is also a viable solution for parallelizing calculations at the hardware level

without requiring a prohibitively expensive infrastructure.

In this work, we present the first application of FPGAs for use in massively parallelized

quantum dynamics of large chemical systems (up to 3,338 atoms). To this end, we have mod-

ified our real-time, time-dependent density functional tight binding (RT-TDDFTB) code to

make use of the highly parallelized architecture of FPGAs. Our motivation for implement-

ing RT-TDDFTB with FPGAs is two-fold: (1) the RT-TDDFTB formalism scales favorably

with system size and allows us to compare the performance of FPGAs with other parallelized

hardware approaches, namely the GPU-enabled DFTB and RT-TDDFTB implementations

used in our prior work,14–18 and (2) the techniques presented in this work can be used as a

first step towards full DFT-based electron dynamics or other DFTB-based methodological

developments such as large-scale non-adiabatic dynamics calculations. Since FPGAs have

not been previously used by the quantum dynamics community, we give a detailed descrip-

tion of our approach (at both a hardware and programming level of detail) in conjunction

with several benchmark tests. Finally, we present comparisons of the speed and energy gains

obtained with FPGAs compared to CPUs/GPUs to highlight their immense promise for
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carrying out massively parallelized quantum dynamics calculations on these novel hardware

architectures.

2. Theory and Computational Methodology

Before proceeding with a detailed description of our FPGA parallelization enhancements, we

first give a brief overview of the RT-TDDFTB formalism. Over the past few years, the RT-

TDDFTB approach has garnered significant attention as an extremely efficient technique for

probing the non-equilibrium electron dynamics of extremely large chemical systems. Specif-

ically, we and others have used the RT-TDDFTB approach to understand photo-injection

dynamics in dye-sensitized TiO2 solar cells,19–21 many-body interactions in solvated nan-

odroplets,17 and excitation energy transfer dynamics in plasmonic arrays.15,16 These real-

time quantum dynamics calculations are carried out by applying a time-dependent electric

field to the initial ground state density matrix, resulting in an explicitly time-dependent

Hamiltonian Ĥ(t)=Ĥ0 − E0(t) · µ̂(t), where E0(t) is the applied electric field, and µ̂(t) is

the dipole moment operator. Since the quantum system is directly propagated in the time-

domain, E0(t) can have any arbitrary time-dependent form. For example, if E0(t) is a Dirac

delta function, E0(t) = δ(t − t0), this yields an optical absorption spectrum (obtained af-

ter a Fourier transform of the time-evolving dipole moment). However, if E0(t) takes the

form of a sinusoidal perturbation, it represents a continuous interaction of the system with

monochromatic light in the time domain. When either of these time-dependent fields are

applied, the density matrix ρ̂ evolves according to the Liouville-von Neumann equation of

motion which, in the nonorthogonal-DFTB basis, is given by

∂ρ̂

∂t
=

1

i}
(S−1 · Ĥ[ρ̂] · ρ̂− ρ̂ · Ĥ[ρ̂] · S−1), (1)

where Ĥ is the Hamiltonian matrix (which implicitly depends on the density matrix), S−1

is the inverse of the overlap matrix, and } is Planck’s constant. When the applied incident
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fields are smaller than the internal fields in a molecule or material, the system is in the linear

response regime.22 Under these conditions, the time evolution of the dipole moment operator

can be expressed as the convolution between the applied electric field perturbation, resulting

in the following response function of the system

〈µ̂(t)〉 =

∫ ∞
0

α(t− τ)E(τ)dτ, (2)

where E(τ) is the electric field that induces a perturbation in the Hamiltonian, and α(t− τ)

is the polarizability tensor. Upon application of the convolution theorem, Equation 2 can be

expressed in the frequency domain as 〈µ̂(ω)〉 = α(ω)E(ω). The imaginary part of the average

polarizability, ᾱ is an experimentally measurable quantity related to the photoabsorption

cross section by the expression σ(ω) = 4πω/c · Im(ᾱ), where c is the speed of light, and

Im(ᾱ) is the imaginary part of the average polarizability. In this work, we utilized the

DFTB+ code23 to construct the ground-state Hamiltonian, overlap matrix elements, and

the initial single-electron density matrix within the self-consistent DFTB approach. With

these ground-state quantities pre-computed, excited-state electron dynamics calculations

were carried out with a customized RT-TDDFTB implementation on both GPU and FPGA

hardware architectures, as described in the following paragraphs.

FPGA Hardware. Fig. 2 depicts a high-level schematic of the FPGA hardware used

in this work, which is composed of an Intel Xeon CPU E5-2460 interfaced with a Virtex-7

FPGA.24 This specific FPGA configuration has 32 memory channels, each of which has a

theoretical bandwidth of 1.33 GB/s. As such, to achieve maximum I/O performance, we

configured our FPGA to execute read/write requests of 64 bytes aligned to 64-byte addresses

(the FPGA can carry out read/write requests of 8, 4, 2, or 1 byte, but these smaller sizes

result in a lower I/O performance). Our FPGA implementation was written using Verilog

HDL, and our hardware design was simulated with ModelSim25 to test its accuracy. Our

FPGA implementation was synthesized, placed, and routed with Vivado 17.3.26 The target
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frequency of our FPGA was set to 167 MHz. Our implementation was modified to accept

real- and complex-valued single precision floating point matrices as input (discussed further

in Sections 4 and 5). All arithmetic operations were implemented on Xilinx cores27 by taking

advantage of either digital signal processors (DSP) or lookup tables (LUTs).

40 GB/sec

External Memory
External Memory

Host Interface

(HIX)

8 GB/sec

Application
Engine

Memory
Controllers

PCIExpress Gen3 x8

Figure 2: Schematic of the Micron Wolverine FPGA used in this work. This hardware
architecture is comprised of a CPU with one FPGA attached via a PCIExpress Line. The
FPGA is first configured with the specific simulation to be executed, and the CPU sends
commands to the FPGA via the host interface. These commands include operations such as
writing (reading) data to (from) the FPGA external memory, executing the computation,
and querying the status of the computation.

GPU and CPU Hardware Comparisons. To assess the performance of our FPGA

implementation against other computational hardware, we also examined computational

timings and energy expenditures of both GPUs and CPUs. For our GPU benchmark tests,

we utilized an NVIDIA K40 GPU (we used only one of the K40 devices within a K80

GPU) equipped with an Intel Xeon E5-520 processor and 24 GB of RAM. To ensure a fair

assessment of computational efficiency, our GPU-based RT-TDDFTB code was compiled

with CUDA (release 9.0) in conjunction with the CUBLAS linear algebra library28 to achieve

optimal computational performance on the GPU. In all our GPU-based tests/comparisons,

error correction capabilities (ECC) were disabled. For our CPU tests, we utilized an Intel
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Xeon E5-2643 V3 processor operating at 3.40 GHz with 256 GB of RAM. Similar to our

GPU benchmark tests, our CPU implementation utilized optimized routines within the Intel

Math Kernel Library (MKL) in conjunction with OpenMP for multi-threading.

To enhance the efficiency of our RT-TDDFTB calculations, the majority (roughly 70%)

of the computation of Equation 1 was offloaded to a co-processor (either an FPGA or a GPU

as described previously, and additional implementation details are given in Section 4). To

enable this efficiency, Equation 1 was computed in multiple steps as follows.

1) In the CPU, the self-consistent charge (SCC) and non-SCC Hamiltonian matrices are

parsed in conjunction with the overlap matrix, orbital-wise electron fillings, and spatial

coordinates of the system. The corresponding data structures for the density, overlap,

and Hamiltonian matrices are subsequently generated.

2) Within the CPU, the matrix product S−1 · Ĥ[ρ̂(t)] is computed.

3) The matrices ρ̂(t), ρ̂(t)T , ρ̂(t−∆t), and the matrix resulting from step 2 are transferred

to the co-processor (i.e., a GPU or an FPGA).

4) ρ̂1(t+∆t) = 1
i} {(S

−1Ĥ[ρ̂(t)])ρ̂(t)}) (2∆t) + ρ̂(t−∆t) is computed in the co-processor.

5) ρ̂2(t+ ∆t) = 1
i} {(S

−1Ĥ[ρ̂(t)])ρ̂(t)T} (2∆t) is computed in the co-processor.

6) The resulting matrices from steps 4 and 5 are transferred to the CPU where the three-

point formula ρ̂(t) = ρ̂1(t) − ρ̂2(t)
T is computed (i.e., a simple subtraction of two

pre-computed quantities with little computational overhead).

7) The density ρ̂ and Hamiltonian Ĥ matrices are updated in the CPU.

8) The entire process starting with step 2 is repeated to propagate the electron dynamics

for the desired time duration. The time-dependent charges, dipole moment, and density

matrices are subsequently processed.
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3. Chemical Systems and General FPGA Matrix Oper-

ations

Since the main focus of this work is to implement (which is a massive task in and of itself)

and understand FPGA performance gains for computing electron dynamics, we have chosen

a representative set of large chemical structures to assess its efficiency and computational

scaling. To this end, we have constructed a set of hydrogen-terminated carbon nanoribbons29

ranging from 62 – 3,338 atoms, and Fig. 3 depicts a subset of these structures as a function

of size. It is worth mentioning that we specifically chose 3,338 atoms as our upper limit since

this corresponds to the maximum matrix size that can be held in the memory of the GPU

used in our performance benchmarks.

Figure 3: A representative subset of the carbon nanoribbons with various lengths examined
in this work.

In computing the electron dynamics of these large nanoribbons, it is worth noting that

both the Hamiltonian matrix Ĥ and the inverse of the overlap matrix S−1 in Equation 1 are

real-valued, whereas the density matrix ρ̂ is complex-valued. Moreover, while the density

matrix ρ̂(t) is dense, the matrix product S−1 · Ĥ[ρ̂] is sparse, which increases as a function

of the nanoribbon size as shown in Fig. 4.

To efficiently parallelize our RT-TDDFTB calculations on FPGAs, we designed a soft-
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Figure 4: Sparsity of the matrix product S−1 · Ĥ[ρ̂] as a function of nanoribbon size.

ware/hardware kernel that executes steps 4 – 5 (which are the most computationally de-

manding steps, as described in Section 2) and has the capacity for transferring matrices

to and from the co-processor. Moreover, by supporting the matrix operations described in

step 4, the implementation for the matrix operations described in step 5 is already satisfied

since the addition of ρ̂(t−∆t) can be omitted in the latter step. To this end, we created a

general-purpose hardware kernel to support the mathematical operation

Ck = αAB + βCk−1, (3)

where the superscript k denotes the kth iteration, A is a real-valued matrix, and the matrices

B and C along with the parameters α and β are complex-valued. As such, the RT-TDDFTB

simulations in the co-processor can be enabled by setting A = S−1 · Ĥ[ρ̂(t)], B = ρ̂(t) or

ρ̂(t)T , and Ck−1 = ρ̂(t − ∆t). In addition, the parameter α was set to 1
i}(2∆t) while the

parameter β is real and set to one. As described further in Sections 4 – 5, our kernel

exploits the sparsity of A and allows us to decrease both the input/output (I/O) and the

computational complexity of the matrix operations to be offloaded to the FPGA.
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4. Baseline FPGA Design and Architecture

Since FPGAs have not been previously used for quantum dynamics calculations, we first

present a general (but detailed) hardware design for carrying out parallelized matrix multi-

plications. We designate this as our “baseline” FPGA hardware design, with Section 4.A.

describing our baseline implementation for real-valued matrix multiplications and Section

4.B. giving our modifications for complex-valued matrix operations. Section 5 presents

additional acceleration techniques tailored specifically to the efficient propagation of RT-

TDDFTB electron dynamics on FPGAs.

A. Real-Valued Matrix Multiplications on FPGAs

The multiplication of real-valued matrices on FPGAs continues to be a topic of interest,

30–36 and to enable the computations required by our RT-TDDFTB simulations (Eq. 3) we

have modified a previous design31 that was used for real-valued, dense matrix multiplication.

We commence with Fig. 5, which depicts a general-purpose schematic for parallelization of

real-valued matrix multiplication on FPGAs. To allow our baseline design to be completely

general, the size of the matrices A, B, and C are n×m, m× l, and n× l, respectively. More-

over, matrices A, B, and C have been partitioned into sub-blocks of size p×m, m× p, and

p×p, respectively (with n/p and l/p being integer numbers). As described further in Section

6.B., the sizes of these sub-blocks were optimized to utilize most (approximately 70%) of

the memory channels and block RAMs on our FPGA hardware platform. More specifically,

the usage of both the I/O memory channels and block RAM was near its theoretical maxi-

mum (usage of resources beyond 70% in FPGAs can impair the placing and routing of the

design), and further optimizations would lead to minimal/diminishing returns. Within this

schematic, the computation of each block Cij can be obtained via multiplications of the

corresponding blocks in A and B (i.e., C11 = A11B11). More generally, each block Cij can

be calculated as outer products (·) between the columns of block Ai1 and the rows of block
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B1j such that Cij = a1 · b1 + a2 · b2 + ... + am · bm, where the column vector ai is the ith

column of block Ai1 and the row vector bi is the ith row of block B1j. In the terminology

of computational linear algebra algorithms, matrices having the form ak · bk are rank-one

matrices, and the addition of rank one matrices is called a rank one update.37,38 By using

these rank one updates, we can improve both I/O bandwidth and parallelism, since if one

element of the column vector ak as well as the row vector bk are available, we can execute p

multiply-and-accumulate operations simultaneously. Moreover, bk can be reused p times to

improve the performance of matrix multiplications on FPGAs.30,31

Figure 5: Schematic of parallelized matrix multiplication on FPGAs. The computation of
the block C11 can be obtained via the outer-products between the columns of A11 and the
rows of B11.

The general framework for carrying out these parallelized matrix multiplication oper-

ations on FPGAs is shown as a high-level flowchart in Fig. 6. This hardware engine is

comprised of six modules designated as the Scheduler, Reader, Read A Controller, Read B

Controller, Multiply-and-Accumulate, and the Write C Controller. All communication be-

tween these modules is executed via first-in first-out blocks (FIFOs).39 While the design of

FPGA Readers, Writes, and Controllers is generally well established, multiple designs have

been proposed for the implementation of the Multiply-and-Accumulate unit. In this work,

we have modified a previous design31 in which one FIFO (shown in the top left of Fig. 7)

stores the elements of the columns of matrix Ai1 (i.e., the column vectors ak). Similarly,

at the top of Fig. 7, the module has p FIFOs to store the rows of the matrix B1j (i.e.,
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the row vectors bk). In the center of Fig. 7, p Multiply-and-Accumulate units execute the

multiply-and-accumulate operation. At the bottom of Fig. 7, p FIFOs are used for storing

the final values of Cij. The leftmost FIFO stores the elements of the first column in Cij,

and the FIFO next to it stores the elements of the second column in Cij and so on.

The dotted box to the right of Fig. 7 shows the components of a Multiply-and-Accumulate

unit. A block RAM (BRAM) unit, which contains p addresses with 32 bits per address to

hold single precision numbers, is used to store the partial values of Cij. A multiplexer is

then used to multiplex one of the inputs of the adder. During most of the computation, the

input to the adder is a numerical value from the BRAM; however, the multiplexer outputs

zero when the calculation of a new block Cij starts.

Figure 6: High-level view of the design for parallelizing our RT-TDDFTB simulations in
FPGA hardware. In this figure, the Scheduler directs the execution of tasks to the other
modules. The Read (Write) controller reads (writes) one input matrix from (to) the off-chip
memory. Finally, the Multiply-and-Accumulate module executes the matrix multiplication
operation.

The computation of Cij commences as follows. First, the Controller signals the reading

of the first row of block B1j and the first column of block Ai1, which are executed by the

Read B and Read A Controller, respectively. These values are stored in the p FIFOs labeled

bk,0, ..., bk,p−1 and the FIFO labeled ai,k respectively. The Controller then commands the
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Figure 7: Hardware implementation of the Multiply-and-Accumulate module. This module
executes the real-valued outer-products between the columns of matrix A and the rows of
matrix B. The partial results are stored in block RAMs (BRAMs). The final results are
stored in the FIFOs shown at the bottom. The components of the Multiply-and-Accumulate
unit are shown in the dotted box on the right.

Multiply-and-Accumulate module to carry out p multiplications in parallel; i.e., a[0, 0]∗b[0, j]

for j = 0, ..., p − 1. The results of these multiplications are subsequently added to the zero

values coming from the multiplexers and the results are stored in the BRAM at address zero.

After the element a[1, 0] arrives to the top-left FIFO, the Controller signals the execution of

p new multiplications and p new additions. Finally, the results are stored in RAM at address

one, and this process continues until the outer product between the first column of Ai1 and

the first row of B1j is completed.

In addition to the tasks mentioned above, the Controller directs the execution of the

outer product between the second column of Ai1 and the second row of Bj1. The results

of these multiplications are then added to the previous values stored in the BRAMs. This

process continues until the outer product between the last column of Ai1 and the last row of

Bj1 is executed. At this point, the operation Cij = Ai1B1j is completed, and the results are

stored in the p BRAMs. The content of the BRAMs is written to the ci,0, ..., ci,p−1 FIFOs
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one row at the time. Finally, the Scheduler signals to the Write C Controller to write the

content of these FIFOs to the off-chip memory, and this process continues until all the Cij

blocks are computed.

It is worth mentioning a few practical notes that can be used to enhance the efficiency of

real-valued matrix multiplication on FPGAs (we implement some of these tactics in Section

6.D. on a new FPGA hardware architecture). First, the block Cij does not have to be square,

and its size can be tailored to any specific FPGA hardware platform.30 For example, if the

block Cij has dimensions of p× q, the parameter p can be increased to yield higher efficiency

on FPGA platforms that have more on-chip memory. Second, for FPGAs with abundant

floating point units (FPUs), the parameter q can be increased as well. Third, if the delay in

the floating point addition is v cycles, it is desirable to have p ≥ v to maintain computational

efficiency. This constraint arises since the accumulations of the previous outer product must

be finished before the next outer product starts, or the pipeline has to be stalled. Finally, if

one has access to large FPGAs, or multiple FPGAs, several Cij blocks can be computed in

parallel using the computational techniques discussed previously.

B. Complex-Valued Matrix Multiplications on FPGAs

In this section, we describe our customized baseline design for complex-valued matrix mul-

tiplications on FPGAs. While the FPGA engine described in the previous section supports

real-valued matrix multiplication in the expression C = AB, we implemented a new design

for computing complex-valued matrix multiplications required for propagating RT-TDDFTB

electron dynamics (cf. Eqs. 1 and 3). To support this new capability, we first compute an

intermediate matrix Tij given by

Tij = Ai1B1j, (4)

where the blocks of the matrix A and B are real- and complex-valued, respectively. Fig. 8

depicts our customized complex-valued Multiply-and-Accumulate module that executes this
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parallelized operation. Compared to the real-valued multiply-and-accumulate module shown

previously in Fig. 7, p multiply-and-accumulate units have been added so as to compute the

real (tri,k) and imaginary (tii,k) values of Tij in parallel. In this figure, the elements of Tij

are serialized (one row at a time) into two FIFOs, labeled sr and si, that contain the real

and imaginary elements of Tij. With these values in hand, we next compute the following

matrix

Ck
ij = αTij + βCk−1

ij , (5)

which is carried out by the Complex Accumulator module shown in Fig. 9. The design

depicted in Fig. 9 has been harnessed with a new Read C Controller module. This additional

FPGA module reads the complex values of matrix Ck−1 from the off-chip memory into

the FIFOs labeled cr and ci (i.e., the real and imaginary parts of Ck−1). The Complex

Accumulator module executes eight multiplications and six additions, with the real and

imaginary values of Ck
ij written into the FIFOs labeled tr and ti, respectively. At the end of

the computation, the Writer C Controller writes the block Ck
ij into the off-chip memory.

5. Optimized FPGA Design for Efficient Propagation of

RT-TDDFTB Electron Dynamics

Having described our baseline FPGA design, we now present further optimizations that were

added to speed up our RT-TDDFTB quantum dynamics calculations. In these simulations,

as mentioned in Section 3, the matrix A = S−1 · Ĥ[ρ̂(t)] is sparse, whereas the matrices

B = ρ̂(t) and Ck−1 = ρ̂(t−∆t) are dense. As a result, our baseline design was modified to

take advantage of the sparsity of A to satisfy the following three constraints:

1) Since the input matrix Ck−1 is dense, all the elements of the matrix Tij are required

to execute the addition shown in Equation 5. Thus, a number of operations in the
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Figure 8: Hardware implementation of the Complex Multiply-and-Accumulate module. This
module executes the complex outer-products between the real columns of matrix A and the
complex rows of matrix B. The values of the resulting matrix are serialized to the sr and si

FIFOs at the bottom.

Figure 9: Hardware implementation of the Complex Accumulator module. This module
executes the operation αTij + βCk−1

ij . The values of Tij are in the top-left FIFO while the

values of Ck−1
ij are in the top-right FIFO. The complex results are stored in the bottom

FIFOs.
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multiplication of Ai1B1j must be executed to generate all the elements of Tij.

2) To generate all the values of Tij, one must initialize and output the values of the BRAM

into the corresponding FIFOs within our baseline Complex Multiply-and-Accumulate

module depicted in Fig. 8. The initialization of the BRAM can be achieved by executing

the outer products between the first column of the block Ai1 and the first row of block

B1j. Similarly, the outputs can be generated by executing the outer products between

the last column of block Ai1 and the last row of B1j.

3) One can take advantage of the sparsity of A by utilizing a sparse matrix representation

scheme. For instance, in computations where all the elements in the columns of Ai1

are zero, it is not necessary to read the corresponding row in the matrix B1j since the

results of these multiplications are zero. The only exception to this situation is the

second constraint mentioned previously.

To address the requirements mentioned above, we utilized a compressed sparse blocks

(CSB) representation40 with additional customized modifications. A schematic of this rep-

resentation is shown in Fig. 10. To enable these parallelized calculations, Ref.40 utilizes an

integer array that contains the number of nonzero elements per block, where each block is

represented using the compressed sparse row (CSR) representation. In this work, we also

utilized an integer array containing the number of elements per block; however, we represent

each block using a coordinate list format (COO) representation. In the COO representation,

the input matrix can be represented in row- or column-major order; we chose the latter con-

vention since this representation meets the requirements of our design. For computational

efficiency, our implementation browses the block Ai1 one column at a time; thus, before

matrix A is sent from the CPU to the FPGA, it is first divided into blocks, and its CSB

representation is generated. The matrices B and C are then sent to the FPGA as flat two

dimensional arrays.

To accommodate the CSB representation of matrix A, additional modifications of our
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Figure 10: Schematic of the compressed sparse blocks (CSB) matrix representation used in
this work. The input matrix is divided into four blocks of size 4×4. While the block pointer
points to an array containing the number of nonzero elements per block, the coordinate list
(COO) pointer points to an array containing the column index, row index, and the value of
the nonzero elements in each block.

baseline implementation are required. These modifications only alter the Read A Con-

troller and Read B Controller modules, with minor changes to the Complex Multiply-and-

Accumulate module. Fig. 11 depicts our enhanced FPGA design where the Read A Controller

now includes two additional input signals: the Block Pointer and the COO Pointer. Our

enhanced design operates as follows:

1) To compute Tij, the Read A Controller signals the Reader to read the elements of

block Ai1. This operation makes use of the Block Pointer and COO Pointer signals.

2) The Reader places the elements of the COO array (the column index, row index, and

real values of Ai1) into the FIFO labeled fma.

3) The Read A Controller reads the elements in the fma FIFO and signals the Read B

Controller to read the next row (the column index in the COO array indicates the next

row to read in the block B1j). In addition, the Read A Controller places the elements

of the columns of Ai1 into the ari,k FIFO.

4) The Read A Controller notifies the Complex Multiply-and-Accumulate module (via the
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Figure 11: Hardware implementation of our optimized blocked complex-matrix multipli-
cation module. Our implementation harnesses the Block and COO pointer to exploit the
sparsity of Ai1, and, as a result, dramatically decreases the complexity of computing Ai1B1j.

fpb FIFO) when a new outer product between the columns of Ai1 and the rows of B1j

has to be executed.

5) The Complex Multiply-and-Accumulate module reads the input brk,0, b
i
k,0, ..., b

r
k,p−1, b

i
k,p−1

FIFOs as indicated in FIFO fpb. In addition, this module reads the input FIFO ari,k.

These reading operations correspond to the next row in B1j and the next column-

element in Ai1, respectively.

6) Once these 2p+1 FIFOs are populated, the Complex Multiply-and-Accumulate module

executes p complex multiply-and-accumulate operations and stores the results into the

BRAM.

7) As in our baseline design, this process continues until all the outer products between the

columns of Ai1 and the rows of B1j are completed. At the end, Tij is fully calculated.

8) Finally, the Complex Accumulator, shown in Fig. 9, takes Tij as input and computes

Ck
ij as described in our baseline design.
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The FPGA design, as described previously, functions properly and efficiently in steady

state, assuming that the pipelines do not have to be stalled. However, due to the sparsity of

the input block Ai1, we must account for stalls, which occur when a row of Tij is updated

at cycle k, and later, when the same row has to be updated at cycle k + s. Because the

add operation in the FPGA takes v cycles, these updates are allowed if s ≥ v, otherwise we

intentionally stall the pipeline for v − s cycles. The BRAM block shown at the bottom left

of Fig. 11 is used to track when a row in Tij is updated. When row w of Tij gets updated,

the Complex Multiply-and-Accumulate module writes the wth position of this BRAM with

the value of a counter. If row w requires an update, the Complex Multiply-and-Accumulate

module queries the BRAM at position w and determines whether the pipeline has to be

stalled by comparing the current value of the counter with the value stored in the BRAM.

It is worth noting that when the elements in the fma FIFO are processed, the Read A

Controller is able to signal to the Read B Controller which specific rows in block B1j to read.

Each time that a row of B1j is skipped, significant savings in bandwidth, as well as in the

number of floating point multiplications, are achieved. Thus, for every row skipped, 4(2p)

bytes are saved in I/O bandwidth, and p complex-valued multiplications and additions, are

also avoided. As a result, by implementing all the FPGA acceleration strategies discussed

previously, both the I/O as well as the complexity of computing Tij are significantly lowered.

6. Results and Discussion

A. Single vs. Double Precision

To make our discussion of FPGA performance more concrete, we first present various met-

rics/benchmarks for calculating absorption spectra as a function of system size. Fig. 12

shows the absorption spectra obtained from RT-TDDFTB simulations carried out in sin-

gle/double precision for several of the nanoribbons described in Section 3. The absorption

spectrum for each nanoribbon was generated by propagating Eq. 1 in the presence of a Dirac
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delta electric field impulse applied along three mutually orthogonal directions to compute

the polarizability tensor. The resulting time-varying dipole moment was then Fourier trans-

formed to give the absorption spectrum. Regardless of the nanoribbon size, Fig. 12 shows

that the resulting spectra were extremely similar, independent of whether it was computed

in single or double precision.
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Figure 12: Absorption spectra of various carbon nanoribbons computed in single- and double-
precision comprised of (a) 426, (b) 842, (c) 1,674, and (d) 3,338 atoms. In all cases, the
absorption spectra computed in single precision is nearly indistinguishable from the double-
precision spectra.

Table 1 gives a more quantitative comparison of numerical accuracy by calculating the
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mean squared error (MSE) of the computed spectra according to the following expression

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (6)

where y is the absorption spectrum of the nanoribbon computed in double precision and ŷ

is the corresponding spectrum calculated in single precision. We obtained a maximum MSE

of 4.2 (corresponding to the largest nanoribbon), with many of the smaller nanoribbons ex-

hibiting much lower errors. We also carried out similar benchmark calculations on CPUs and

GPUs and found that the MSEs between single/double precision for these hardware plat-

forms were nearly identical to those reported in Table 1 for FPGAs (this is not surprising

since the precision of arithmetic operations on CPUs,41 GPUs,42 and FPGAs43 are required

to be compliant with the IEEE-754 standard, which mandates the accuracy of single/double

precision calculations on these hardware platforms). Nevertheless, these benchmark results

are important since RT-TDDFTB calculations performed in single precision can significantly

reduce FPGA I/O bandwidth and floating point operations.44 Specifically, in FPGAs, the

multiplication of two double or two single precision numbers requires 11 and 3 digital signal

processors (DSPs), respectively.26,27 As such, notwithstanding other hardware considera-

tions, FPGAs can execute at least three times more multiplications per clock cycle when

single precision arithmetic is used.

B. Computational Speedup of FPGAs vs. GPUs and CPUs

In this section, we compare the computational efficiency of our RT-TDDFTB FPGA im-

plementation against execution times obtained with the GPU and CPU. Because FPGAs

are programmed/customized at the hardware level, we can fully take advantage of all the

resources available on the FPGA by including all of the I/O channels and most of the block

RAMs (nearly 70%). In particular, our RT-TDDFTB simulations were replicated such that

four Cij blocks of size 64×64 were computed in parallel, which allows 512 = 4(64×2) single-
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Table 1: Mean squared errors (MSEs) between single vs double precision calculations of the
absorption spectra for the various carbon nanoribbons computed with our FPGA-accelerated
RT-TDDFTB approach.

Number of Atoms Hamiltonian Matrix Size MSE(%)
62 194 ∼ 0
218 746 0.1
322 1,114 0.1
426 1,482 0.2
530 1,850 0.5
634 2,218 0.8
738 2,586 0.9
842 2,954 1.1

1,674 5,898 2.2
3,338 11,786 4.2

precision floating point operations per clock cycle. Table 2 provides a detailed accounting of

the resources utilized by our FPGA implementation.

Table 2: Virtex-7 FPGA Utilization for Computing RT-TDDFTB Electron Dynamics

Resource Available Total Utilization per
Utilization (%) FPGA Engine (%)

Registers 2443K 45.11 11.27
LUTs 1221K 49.42 12.35
LUT RAM 344K 25.25 6.31
Block RAM 1.2K 74.27 18.56
FPUs 2.1K 55.56 13.89
Memory Channels 32 100 25

As mentioned in Section 2, to ensure a fair comparison of computational efficiency, our

GPU-based RT-TDDFTB code used optimized cuSPARSE libraries to compute the S−1·Ĥ[ρ̂]

matrix in Compressed Sparse Column (CSC) format (similar to our FPGA design described

in Section 5). However, we did not observe any gains in efficiency (GPUs are less efficient

for sparse matrix operations, as discussed further in the paragraphs below); as such, we

report GPU performance and energy metrics for calculations that only utilized the CUBLAS

dense routines.28 For our CPU calculations and comparisons, our RT-TDDFTB simulations
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were executed on two and eight threads (i.e., eight CPU cores). Table 3 compares the

total floating point operations (FLOPS) and FLOPS per clock cycle for the CPU, GPU, and

FPGA on 5 representative carbon nanoribbon RT-TDDFTB simulations. These performance

measurements correspond to steps 4 and 5 described previously in Section 2 (i.e., the steps

offloaded to the co-processor for one iteration). The FLOPS for the GPU and CPU were

obtained using the API45 and LIKWID profiling tool,46 respectively. For the FPGA, the

number of FLOPS were directly counted. For each of the hardware platforms in Table 1, the

FLOPS/cycle were calculated by first dividing the total FLOPS by the execution time (to get

the FLOPS per second) and then dividing that number by the operating clock frequency of

that hardware platform. From these results, we observe that the FLOPS are nearly the same

for CPU and GPU, and we attribute deviations between these numbers to different routines

and compiler optimizations for each platform. However, since the sparsity of S−1 · Ĥ[ρ̂]

has been directly exploited on the FPGA at the hardware level, the resulting FLOPS have

been reduced significantly. Most importantly, as the number of atoms in the simulation is

increased, the FPGA executes more FLOPS/cycle. Consequently, in contrast to the CPU

and GPU, the custom-designed pipelines on the FPGA operate in steady-state for a longer

period and execute more arithmetic operations per clock cycle.

Table 3: Comparison of total floating point operations (FLOPS) and FLOPS per clock cycle
for the CPU, GPU, and FPGA

Total FLOPS (×109) FLOPS/cycle

Platform
No. of Atoms

218 426 842 1674 3338 218 426 842 1674 3338

GPU 3.5 27.5 112.2 584.6 2860.1 88 93 96 95 105
CPU 3.7 29.3 135.4 596.2 3030.9 36 35 27 25 24
FPGA 1.1 6.2 15.6 52.6 203.4 100 111 117 126 134

In addition, we profiled our FPGA-enhanced code across all of our benchmark calcula-

tions, and the timings for each step are summarized in Table 4. From our profiling results,

we observe that most of the execution time is spent on matrix multiplications (steps 2, 4,

and 5). This is expected, since the complexity of matrix multiplication is O(n3) while the
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computational complexity of steps 6.2 and 7 is O(n2). In short, these timings justify the

offloading of steps 4 and 5 to the co-processor since the acceleration of these steps will result

in significant reductions in execution time and energy expenditures.

Table 4: Timings for each step in our FPGA-enhanced quantum dynamics simulations

Step Timing (%)
1. Initialization < 1

2. S−1 · Ĥ[ρ̂(t)] 24
3. CPU to FPGA data transfer 2
4&5. Co-processor computations 60
6.1. FPGA to CPU data transfer 2
6.2. ρ̂(t) = ρ̂1(t)− ρ̂2(t)T 5

7. ρ̂ and Ĥ update 6

Fig. 13 compares the computational speedup obtained with the FPGA, GPU, and CPU

for nanoribbon systems containing 62 – 3,338 atoms. As is customary in hardware per-

formance profiling, the computational speedup of each hardware platform is normalized by

dividing its execution time by the timings of the CPU running two threads. For small RT-

TDDFTB simulations on systems containing 62 – 530 atoms, the 8-thread CPU outperforms

both the FPGA and GPU (with the GPU being slightly faster than the FPGA). The lower

performance of the FPGA for these small system sizes can be attributed to two factors.

First, since the FPGA relies on wide and deep pipelines to achieve high throughput, these

pipelines are not able to reach a steady-state when the input matrices are small. More-

over, the latency of the off-chip memory (which is on the order of hundreds of cycles for

the hardware used in this work24) results in further inefficiencies. These latencies severely

underutilize the pipelines, and as a result, larger inputs are required before the pipelines

achieve a steady-state. Second, for small calculations (i.e., those having only a few hundred

atoms), the computational speedup obtained with GPUs and FPGAs does not compensate

for the data-transfer communication time required to execute steps 4 and 5 with the co-

processor (cf. Section 2). As such, significant computational speedup on GPUs and FPGAs

can only be obtained for large chemical systems (which is the primary purpose of this work),
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since the co-processor can carry out a significant portion of the calculation to compensate

for the overhead associated with data transfer to and from the CPU. When the system size

reaches 634 atoms, our FPGA implementation becomes more efficient than the GPU and is

competitive with the 8-thread CPU. Finally, for large RT-TDDFTB simulations on systems

containing over 842 atoms (where the sparsity is ˜90%, as shown in Fig. 4), our FPGA

implementation outperforms both the GPU and CPU. Most importantly, as the number of

atoms increases, the performance gap between the FPGA and the other competing hardware

platforms increases as well (with the FPGA achieving a 5× speedup for the largest system).
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Figure 13: Comparison of computational speedup for the CPUs, GPUs (K40 architecture),
and FPGAs (Virtex-7 architecture). For clarity, the speedup of each hardware platform is
normalized by dividing its execution time by the timings of the CPU running two threads.

It is also worth mentioning that the computational performance of the GPU and CPU

starts to saturate/plateau for large systems, whereas the performance of the FPGA continues

to increase. Our FPGA implementation outperforms other platforms since it was specifically

designed at the hardware level to take advantage of the sparsity of S−1·Ĥ[ρ̂], which effectively

decreases the I/O and computational complexity of the problem (even more efficiently than

GPUs). In particular, the performance of our FPGA implementation grows as a function of

system size since the sparsity of S−1 · Ĥ[ρ̂] increases with the number of atoms (cf. Fig. 4).

As demonstrated in our benchmark comparisons, it is important to emphasize that the

multiplication of large, sparse matrices on GPUs is quite inefficient – a fact that has been
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largely overlooked by the quantum chemistry/dynamics community. Specifically, GPUs are

much better suited for dense matrix operations and achieve ˜60% of their theoretical peak

performance, as measured in floating point operations per second, or FLOPS.47,48 However,

GPU performance significantly degrades as the sparsity of the input matrices increases (even

when a sparse library is used), resulting in ˜10% of their theoretical peak performance.47,49,50

GPUs suffer this significant drop in efficiency since they belong to a hardware classification

known as single instruction multiple data (SIMD) architectures51 – a class of computational

architectures that can only execute the same instruction over multiple streams of data. In

short, GPUs were specifically designed to deliver the highest throughput when the inputs are

dense. In this scenario, GPUs (1) access contiguous chunks of data in off-chip memory via

coalesced reads and writes, (2) provide a high off-chip memory bandwidth, (3) store efficiently

small blocks of data in shared memories, and (4) execute a large number of floating point

operations per clock cycle.52 However, when the inputs of the matrices are sparse, GPUs

encounter several difficulties that incur immense computational overhead, including: (1)

storing the input matrices in a sparse matrix representation format, (2) accessing the data

in an indirect fashion, since the metadata describing the input matrix has to be accessed

before the data itself is read, (3) not having enough inputs (due to the sparsity of the input

data) to fully saturate the floating point units, and (4) having a non-trivial distribution of

equal work among the stream processors.53 While FPGAs encounter the first, second, and

fourth difficulties mentioned previously, their pipelines can be customized to take advantage

of the granularity of the input data. Moreover, FPGAs can be adapted to provide fine-

grained access to off-chip memory, flexible on-chip memory storage, and wide/deep pipelines

to fully tackle the problem at hand.50,54 As such, the use of FPGAs for these RT-TDDFTB

electron dynamics applications shows significant performance gains (even beyond modern

GPUs), particularly for large chemical/material systems.
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C. Energy Consumption of CPUs, GPUs, and FPGAs

In this section, we compare the energy consumption of each hardware platform, which is a

practical and important metric (particularly for supercomputing centers mentioned in the

Introduction) that has not been fully addressed by the quantum chemistry community. For

the RT-TDDFTB electron dynamics performed on the GPU and FPGA, we measured the

raw power by utilizing the NVIDIA management library and the Micron development kit,24,55

respectively. For the GPU benchmarks, we utilized the correction scheme in Ref.56 to give

an accurate power estimation; in the CPU, the power was measured via the Likwid46 suite.

In our assessment of the FPGA and GPU platforms, the reported energy consumption does

not include the energy consumed by the CPU since the majority of the computation (over

70%) was carried out on the co-processor (i.e., either the FPGA or GPU), and accounting

for the power expenditures consumed by the CPU did not alter the observed trends.
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Figure 14: Comparison of energy consumption for FPGAs, GPUs, and CPUs (note the
logarithmic scale on the vertical axis).

Fig. 14 compares the energy consumption in units of Watt-minutes for our four hardware

platforms. The total energy was calculated by integrating the power as a function of time

that each hardware platform consumes per calculation. In the GPU, the power usage was

limited to 150 W. As shown in Fig. 14, the energy gap between the FPGA and GPU/CPU

increases dramatically with the number of atoms in the system (note the logarithmic scale on

the vertical axis). On average, the CPU and GPU consume 3.77 and 4.05 times more energy,

respectively, than the FPGA, and this difference in energy efficiency is expected to further
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increase with system size. Similar to the computational speedups described in Section 6.B.,

these massive calculations can be executed in an extremely energy-efficient manner since our

FPGA implementation was specifically designed this way (by controlling individual electrical

signals in the hardware). In general, CPUs and GPUs are relatively expensive to power with

an energy efficiency of 10 MOPS/mW, whereas FPGAs are ˜5 times more cost effective with

an efficiency of 50 MOPS/mW.8

D. Performance on Other FPGA Hardware Architectures

To highlight the generality of our FPGA implementation, we also used additional optimiza-

tion techniques (discussed at the end of Section 4.A.) to perform a few benchmark tests on

newer FPGAs, namely the Kintex and Virtex UltraScale hardware architectures,57 which we

briefly discuss here. While our previous simulations were conducted on modern server-grade

Virtex-7 FPGAS, we have migrated (synthesized, placed, and routed) our hardware design

to a Virtex Ultrascale chip to forecast the gains in performance due to these newer hardware

architectures. This migration is straightforward since the components used in our design

are fully compatible with each other.26 Specifically, (1) the Verilog modules used previously

were directly implemented on this newer hardware, and (2) the Xilinx FPUs and block RAMs

were migrated effortlessly since these units are forward compatible. With these relatively

easy alterations, our RT-TDDFTB electron dynamics could be executed at 266 MHz on the

VU9P Virtex UltraScale chip (when our design is routed in this device, 52.5%, 50.8%, and

53.3% of the LUTs, block RAM, and ultra-block RAM resources are used, respectively). In

short, because our design is quite general and can be placed/routed in a newer FPGA op-

erating at 266 MHz (compared to the 167 MHz of our current FPGA), our implementation

has the capability to run even faster, with additional performance gains of 62%, even beyond

the computational speedup observed in Fig. 13.
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7. Conclusion

In this work, we have presented the first application of field programmable gate arrays (FP-

GAs) for the fast and energy-efficient calculation of real-time electron dynamics in large

chemical/material systems. Since FPGAs can be customized at the hardware level (even

down to the level of specific electrical signals through user-defined gates), our implementa-

tion allows the simultaneous execution of several complex operations in an efficient manner,

resulting in a truly optimized computational performance. Since FPGAs have not been

previously used by the quantum dynamics community, we have provided a detailed descrip-

tion of our approach as a self-contained reference (with both hardware and programming

details), followed with additional acceleration techniques tailored specifically to the efficient

propagation of RT-TDDFTB electron dynamics. To thoroughly test and understand the

performance of our new FPGA enhancements, we have examined a variety of performance

benchmarks that include single vs. double precision tests, computational speedup compar-

isons against GPUs/CPUs, detailed energy consumption measurements, and an assessment

of performance gains on other candidate FPGA hardware architectures.

By offloading the most intensive and repetitive calculations onto an FPGA, we show

that the computational performance of our hardware implementation can even exceed that

of optimized commercial mathematical libraries running on high-performance GPUs. In

addition to this impressive computational speedup, we show that FPGAs are immensely

energy-efficient and consume ˜4 times less energy than modern GPUs or CPUs. This latter

metric is particularly promising since the power consumption of supercomputing centers

(which incurs over $1 million in power costs and causes deleterious climate change effects) is

a contemporary topic that will need to be addressed soon, as exascale computing capabilities

start to become more widespread and commonplace. Finally, it is worth mentioning that

FPGA programming is at a similar developmental stage that GPUs started at 20 years ago;

i.e., GPUs were first programmed in low-level machine languages but have now advanced to

the stage where they are widely used to accelerate numerous quantum chemistry applications.
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Likewise, FPGA performance has doubled in the last few years,58 and the implementation

techniques and performance metrics demonstrated in this work indicate that FPGAs could

also play a similar and promising role in the acceleration (and energy-efficient calculation)

of other types of quantum chemistry and materials science applications in the near future.
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